Ensembles of extreme learning machine networks for value prediction

نویسندگان

  • Pablo Escandell-Montero
  • José María Martínez-Martínez
  • Emilio Soria-Olivas
  • Joan Vila-Francés
  • José David Martín-Guerrero
چکیده

Value prediction is an important subproblem of several reinforcement learning (RL) algorithms. In a previous work, it has been shown that the combination of least-squares temporal-difference learning with ELM (extreme learning machine) networks is a powerful method for value prediction in continuous-state problems. This work proposes the use of ensembles to improve the approximation capabilities of ELM networks in the context of RL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Diagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks

Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Transparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density

Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...

متن کامل

Bankruptcy Prediction by Supervised Machine Learning Techniques : A Comparative Study

It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014